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Abstract

The scatterometer wind retrieval process produces several pos-
sible wind vector choices or ambiguities at each resolution cell.
Ambiguity selection routines are generally ad hoc and often re-
sult in ambiguity selection errors. It is important to locate areas
of ambiguity selection error to assess the quality of scatterom-
eter wind data. A simple consistency check is presented based
on comparing selected winds from SeaWinds on QuikSCAT
to a low order wind field model fit. Regions exceeding er-
ror thresholds are flagged as possible ambiguity selection er-
rors. Appropriate error thresholds and additional flagging cri-
teria are set through an analysis of false alarms versus missed
detections on a training set of 15 revolutions of data. The algo-
rithm correctly identifies 97% of the regions manually flagged
as ambiguity selection errors in the training set with a false
alarm rate of less than 2%. Applying the algorithm to the entire
QuikSCAT data set, we conclude that the ambiguity selection
is over 95% effective on regions of rms wind speeds greater
than 3.5 m/s. The algorithm validates that higher noise occurs
in low wind speed regions and at nadir. Additionally, fewer
estimated ambiguity selection errors occur at nadir and on the
swath edges due to a larger ambiguity set in those regions. The
percentage of ambiguity selection errors are found to be highly
correlated with the number of cyclonic storms passed by Sea-
Winds.

1 INTRODUCTION

Scatterometers are spaceborne radars that infer near ocean winds.
Scatterometers yield broader and more frequent coverage of
ocean winds than traditional in situ observations. SeaWinds
on QuikSCAT is the latest scatterometer launched by NASA.
SeaWinds offers many advances in ocean wind estimation over
previous scatterometer designs. Having a larger swath than its
predecessors, SeaWinds affords near global coverage of surface
winds on a daily basis. Because accuracy is very important, an
assessment of the quality of SeaWinds data is essential.

Scatterometers measure radar pulse returns from the ocean’s
surface. The power in the return is used to calculate the nor-
malized radar backscatter cross-section
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and the wind is not unique, several measurements from differ-
ent azimuth angles are required to infer the wind velocity. In-
strument noise, GMF inaccuracies, and other factors introduce
uncertainty into the measurements resulting in multiple wind
vector estimates at each wind vector cell (wvc). These possible
solutions are known as point-wise ambiguities [3]. The point-
wise ambiguities at a wvc generally have similar wind speeds
but different directions. Each ambiguity has an associated like-
lihood and there is no assurance that the first ambiguity is the
correct choice. A separate step known as point-wise ambiguity
selection is used to select a unique wind vector at each wvc.
One of the difficulties in wind scatterometry is selecting the
ambiguity closest to the true wind. When an ambiguity not the
closest to the true wind is selected, an ambiguity selection error
occurs.

The current point-wise ambiguity selection process used by
NASA’s Jet Propulsion Laboratory (JPL) for SeaWinds is a me-
dian filter approach. Numeric weather prediction models are
used to nudge the initial estimate of the wind field. Then, a
modified point-wise median filter iteratively selects the ambi-
guity at each wvc best matching the flow of the surrounding
wvcs. This method is ad hoc, but performs well under most
circumstances.

Limitations in both the nudging process and the point-wise
median filter introduce ambiguity selection errors. Unfortu-
nately, it is not possible to verify correct ambiguity selection
without knowledge of the true wind. Nevertheless, due to the
(generally) red spectrum of the wind it is possible to evalu-
ate the self-consistency of the wind field resulting from the
ambiguity selection process. As [1] demonstrated, the self-
consistency can be evaluated by comparing the selected wind
to a least-squares fit using a low-order Karhunen Loeve (KL)
model. This consistency check, though not without limitations,
can be a useful tool for a quality assurance (QA) check of the
data.

This paper develops an improved SeaWinds-data only method
for detecting ambiguity selection errors and evaluating the gen-
eral quality of the data. The QA algorithm and the method for
setting appropriate thresholds are discussed in detail. In ad-
dition, a level bit flag is introduced which conveys the overall
quality of each wvc. The algorithm is applied to a sample set
of QuikSCAT winds. Due to a larger ambiguity set at nadir
and along swath edges, less ambiguity selection errors are in-
ferred at nadir and along swath edges than in the off-nadir re-



gion. However, nadir and low wind speed regions are shown to
be noisier. The position of ambiguity selection errors tends to
be highly correlated with the position of cyclonic storms. The
baseline ambiguity selection is estimated to be at least 95% ef-
fective for overlapping regions with rms wind speeds above 3.5
m/s.

2 NOISE AND POINT-WISE AMBIGUITY SELECTION

The point-wise wind estimation process infers wind speed and
direction from noisy backscatter measurements. At each wvc,
a set of point-wise ambiguities is generated by finding the local
minima of the point-wise objective function. The point-wise
weighted least-squares objective function is a measure of the
error between the observed

� �
measurements and a wind vec-

tor’s corresponding
� �

values projected through the GMF, i.e.��	�
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where
� �	 is the noise variance of the �! �" measurement and� �

u �#� �$� 	 � is the forward projection of a wind vector es-
timate

�
u ��� � through the GMF given � 	 , the azimuth angle

of the �  �" measurement. The objective function generally has
multiple local minima representing the point-wise wind ambi-
guities. With SeaWinds, only the first one to four ambiguities
are used in the estimation process. The ambiguities depend
on the

� �
measurements as well as the instrument geometry.

Where multiple measurements lack sufficient azimuthal vari-
ation (i.e. at nadir), wind estimates are noisier. Also, a low
signal to noise ratio in low wind speed regions can result in an
inaccurate estimate of the wind’s direction. Thus, point-wise
retrieved winds both at nadir and in low wind speed regions
tend to be noisy.

After generating the set of point-wise ambiguities, an am-
biguity selection routine is employed. The ambiguity selec-
tion algorithm currently used by JPL in processing SeaWinds
data has two parts: nudging and median filtering. In traditional
nudging, each wvc is set to the ambiguity that most closely
matches an outside estimate of the wind field, i.e. numerical
weather prediction models. JPL implements a variant of tradi-
tional nudging known as thresholded nudging with SeaWinds.
In thresholded nudging, the estimated likelihood of the correct-
ness of the first ambiguity or instrument skill at a given wvc
dictates the set of ambiguities used to initialize the process.
Where the estimated instrument skill is high, only ambiguities
with high likelihood values are chosen in nudging. Where the
estimated instrument skill is poor, all ambiguities may be used.

After selecting an initial field by nudging, the point-wise me-
dian filter is applied [4]. For each wvc, the point-wise median
filter selects the ambiguity that minimizes the directional error
between the ambiguity and the surrounding cells, i.e.%&('*),+#-/.10324 53687�	�
 5�9:7
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where D 	�> are directions of the surrounding selected wind vec-
tors and � 45C; is the direction of the &QPLR alias at wvc S��UT . The
new chosen ambiguity,

%& replaces the previous ambiguity on
the next iteration. The process is iterated until convergence cri-
teria are met.

Although the JPL point-wise ambiguity selection routine gen-
erally produces self-consistent results, it is ad hoc and does not
guarantee the correct solution. In addition, the process is sen-
sitive to the nudging field. Thresholded nudging also is prob-
lematic in areas of estimated high instrument skill where only
the first ambiguity is used in the nudging process. When the
first ambiguity is incorrect (due, for example, to rain contam-
ination), ambiguity selection errors often occur. In addition to
ambiguity selection errors, noise may cause a selected ambi-
guity to seriously deviate from the true wind albeit there is no
better choice.

3 THE KL WIND MODEL

Our QA algorithm is based on comparing the selected wind
field to a low order model fit. The wind field model is data-
derived using the KL-based technique described by [1] for use
with NASA scatterometer (NSCAT) data. The KL approach
presumes ambiguity selection is generally good. This was shown
to be true for NSCAT and similar results have been obtained for
SeaWinds data.

3.1 Formation of the KL Wind Model

The KL model is formed from the eigenvalues of an autocorre-
lation matrix. The following steps outline the how the KL wind
model is created from a training set of QuikSCAT winds:

1. The training set is subdivided into VXWYV wvc regions
(typically VXZ\[ to 24). Each region contains no miss-
ing data points.

2. The standard vector form ( ] 4 ) of the wind field is formed
by column scanning the rectangular ( ^ and _ ) compo-
nents for each V`WaV region, i.e.

] 4 'cb1dfehg ^ 4:idfehg _ 4:ikj�l (3)

where d e gnm i represents column ordering of the matrix.

3. The autocorrelation matrix o is estimated as

%o 'qpr s�4 
�� ] 4 ] 4ut (4)

where
r

is the number of VvWwV wind fields examined.

4. The orthonormal matrix x is extracted by taking the eigen-
value ( y ) decomposition of

%o where%o ' x/yzx t l (5)
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Figure 1: The first 50 eigenvalues of the 8 W 8 KL model.

The diagonal elements of y are the eigenvalues while the
columns of x are the the eigenvectors which become the
basis fields or model parameters of the KL model.

5. The orthonormal matrix x is truncated to an suitable num-
ber of parameters, forming the restricted basis { .

The eigenvectors corresponding to the largest eigenvalues
model the general wind flow. For an 8 W 8 wvc model, the
6 highest eigenvalue wind fields do an adequate job of describ-
ing over 95% of the wind variability (see Figure 1). These wind
fields form a basis set for the wind field model as shown in Fig-
ure 2. Because the 8 W 8 model requires so few parameters to
characterize the major wind flow, it is chosen as the model size
for our QA algorithm.

3.2 Weighted Least-Squares Fit Using the KL Model

To evaluate the consistency of the wind, a wind field is written
as a linear combination (using a least-squares fit) of the trun-
cated basis set, { . The coefficients ( |} ) of the model parameters
are obtained using the weighted least squares estimate of { 9 � ,{�~ , i.e., |}(' { ~ ] H (6)

Model Parameter 1 Model Parameter 2 Model Parameter 3

Model Parameter 4 Model Parameter 5 Model Parameter 6

Figure 2: The truncated KL model used in the QA algorithm.

Observed Wind Model Fit

Figure 3: 8 W 8 Region of QuikSCAT point-wise selected wind
and the KL model fit.

where ] H is the standard vector form of the 8 W 8 wind field.
The weighted least squares estimate,{ ~ ' � { t
� { � 9 � { t�� (7)

ignores non-data points (i.e. land or missing data) via the weight-
ing matrix � , a diagonal matrix with ones corresponding to
places with real data points and zeros corresponding to places
with non-data points. The model-fit wind field ( ]�� ) is then] � ' {a|} l (8)

The difference between the model-fit and observed wind field
is computed. Where the difference is significant, the wind field
basis set is not adequate for describing the selected ambiguity
field.

Figure 3 shows an 8 W 8 wvc region of point-wise selected
wind and its least squares approximation. This example con-
tains inconsistent flow evidenced by the divergent nature of the
central section. The restricted basis cannot accurately represent
this feature. This region is identified as a possible ambiguity
selection error.

In general, differences between the selected ambiguity field
and the model-fit field may result from several causes:

1. Ambiguity selection errors, especially when the differ-
ence is large. Ambiguity selection errors result in large
changes in the wind direction which are inconsistent with
realistic wind flow.

2. Limitations of the basis wind field. Because a truncated
KL basis is used, the basis set does not include fronts and
other fine-scale features.

3. Noise in the scatterometer wind measurements.

It is also possible to have an area of ambiguity selection er-
ror with spatially consistent wind field. Our technique cannot
identify such regions.

Due to these considerations, the algorithm is considered only
useful in flagging regions containing possible ambiguity se-
lection errors which are evidenced by inconsistent wind flow.
Without knowing the true wind it is impossible to identify ac-
tual ambiguity selection errors with 100% accuracy. A set of
empirically determined thresholds is used to determine if the
errors are significant enough to give a QA flag.



4 AN OVERVIEW OF THE QUALITY ASSURANCE AL-
GORITHM

Formally, the QA algorithm works in the following way:

1. Segment swath: The swath is segmented into 8 W 8 wvc
wind fields overlapping by half in the cross-track and
half in the along-track directions. All regions contain-
ing more than 25% non-data points are excluded.

2. Model fit: A weighted least-squares model fit is made of
the each region.

3. Compare observed wind to model fit: The direction error
and vector error for each wvc in the region is calculated.
The direction error is defined as the difference in direc-
tion between the model-fit cell and the selected ambigu-
ity, i.e. ��� ' B �:� � � � B Hh�Q���@� ��K H (9)

where �A� and � � are the directions of the modeled and
observed cells respectively. The direction error is always
between 0 � and 180 � . The vector error is defined as the
magnitude of the vector difference between the model fit
and the selected ambiguity, i.e.� � '�� ��� � � � � � ��� ��� � � � � � ���:�� (10)

where
��� �w� � � � and

��� � � � � � are the u and v components
of the model-fit cell and observed wvc respectively.

4. Flag individual cells: Individual cells are flagged which
exceed thresholds in direction or vector error. Two sets
of wvc thresholds are used: constant and variable. Vec-
tors exceeding the constant thresholds are flagged as noisy
vectors, and those exceeding variable thresholds are flag-
ged as possible ambiguity selection error vectors.

5. General classification using constant thresholds: Regions
are classified as “good,” “fair,” or “poor” according to
the percent of valid cells flagged per region by constant
thresholds. These classification delimiters are called re-
gion thresholds. This general classification rates the over-
all consistency of the wind in each region. Noise, am-
biguity selection errors, and limitations of the KL basis
may contribute to a “fair” or “poor” classification.

6. Ambiguity selection error detection: A more sophisti-
cated analysis additionally flags the region as a possible
ambiguity selection error. This is known as the ambi-
guity selection error (ASE) region flag. This binary flag
is optimized to locate ambiguity selection errors by sup-
pressing known swath and wind speed dependent noise
using a set of variable wvc thresholds.

The QA algorithm is summarized in Figure 4. The following
sections describe both the general classification and the ASE
flag in detail.

yes

Make a model
fit of the region

error threshold

Calculate number

an angle or vector
of vectors exceeding Compare the 

two regions

no

Divide swath into
   NxN sections

Select an NxN
        region

Does it

valid data
points?

contain enough

Classify Region
Good
Fair

Use optimized

Poor

thresholds to 
determine if
region contains
ambiguity 
selection errors

Figure 4: Flow chart describing the quality assurance algo-
rithm.

5 GENERAL CLASSIFICATION USING CONSTANT
THRESHOLDS

The QA algorithm’s general region classification indicates the
level to which the observed wind deviates from the model in a
given region. Noise, ambiguity selection errors and limitations
of the truncated basis contribute to the difference between the
model fit and the observed wind. This section discusses the
scheme for classifying regions and the meaning of each classi-
fication.

A region is classified according to the number of wvcs flagged
per region by constant thresholds. This algorithm uses some of
the same wvc thresholds found in [1]. Table 1 shows the wvc
thresholds used in the general region classification of the Sea-
Winds algorithm.

In Table 1,
�A� ��� is the region root mean squared (rms) wind

speed defined by �:� ��� '�� ] t� ] �V � �� (11)

where ]�� is the standard vector form of the observed wind field
and V is the number of valid data cells in the region. The value
of 2.7 m/s used for the vector error was originally used as a
maximum component error threshold in [1]. However, a maxi-
mum component error metric preferentially flags error vectors

Table 1: Constant thresholds determining the flagging of a vec-
tor. ( ~ Denotes values used by [1]).

WVC Threshold Value
direction error 23 � ~

vector error .�)� 1¡ � l£¢ ~¤ lC¥ � � ��� m/s



Table 2: Thresholds determining the classification of a region.
( ~ Denotes Values used by [1]).

Classification Percentage of cells
flagged per region

“Good” ¦ 5%
“Fair” 5 - 20%
“Poor” § 20% ~

lying along a component axis. Thus, a vector error metric is
used because it is independent of the error vector’s orientation.

The vector error threshold is also dependent on region rms
wind speed. The six parameter KL model has difficulty mod-
eling high cell-to-cell wind speed variation. For high speeds,
this variation may be greater than 2.7 m/s and thus cells may
be flagged due to poor modeling. To account for this, when a
region of rms wind speed greater than 5.4 m/s is encountered,
the threshold is raised to 1/2 the rms wind speed of the region.

Regions are classified by the number of cells flagged as shown
in Table 2. The classifications of the region flagging scheme
have the following general meanings:

“Good” - (less than 5% of wvcs flagged) The wind flow fits
the model estimate very well and is spatially consistent with a
low noise level.

“Fair” - (between 5 and 20% of wvcs flagged) The wind flow
is consistent, but some vectors may contain moderate amounts
of noise and/or possible ambiguity selection errors. Wind fields
with fine scale spatial variations (e.g. fronts) may also be flagged.

“Poor” - (more than 20% of wvcs flagged) The wind flow is
not consistent due to ambiguity selection errors or high levels
of noise. Nadir and low wind speed regions (both of which are
noisier) are more likely to classified “poor”. Features such as
fronts or cyclones also are also likely to be flagged due to the
model’s restricted basis set.

Although these classifications are not optimized to only iden-
tify regions of ambiguity selection error, they are helpful in de-
termining the integrity of the data itself. Data cells corrupted
by noise or rain are more likely to be flagged “poor” using these
classifications. The ASE flag described in the next section re-
duces the effects of noise in locating true ambiguity selection
errors.

6 IDENTIFYING AMBIGUITY SELECTION ERRORS
(ASE FLAG)

Because SeaWinds has variable performance with wind speed
and swath position, it is difficult to locate ambiguity selec-
tion errors for all regions with constant performance. When
the constant threshold scheme (as in the general classification)
is used, the algorithm preferentially identifies regions of high
noise level. Using SeaWinds data, the noise variance per cross
track position and wind speed is estimated in this section. By

adjusting wvc thresholds to perform optimally for each wind
speed and cross track position we desensitize the algorithm to
known high noise regions. The following sections develop the
method of determining optimal thresholds for variable cross
track positions and wind speeds.

6.1 Estimating Noise Variance in Nadir and Low Wind
Speed Regions

Near the center of the swath, the difference in azimuth angle
between the two SeaWinds radar beams decreases to a mini-
mum. In addition, the fore and aft observations become 180 �
out of phase. This limited azimuth variation among the mul-
tiple measurements creates a larger variance in the likelihood
estimates for each ambiguity [5]. The larger variance results in
a noisier estimated wind field. Figure 5 demonstrates a typical
nadir-region wind field. The lack of azimuth variation in the� �

measurements has introduced noise. Figure 5 also shows a
wind field in the “sweet spot” of SeaWinds’ swath. The “sweet
spot” refers to a region of high azimuth variation outside of
nadir. Notice the wind field is much smoother than the nadir
wind field. The smoother nature of the wind field is due to a
larger azimuth variation among multiple

� �
measurements.

In addition to the relationship between swath position and
noise, estimates are also affected by wind speed. A calm ocean,
corresponding to a low wind speed, is not a good scatterer.
Thus, the signal to noise ratio (SNR) for a low wind speed
estimate may be much lower than for a moderate wind speed
estimate. A low SNR can result in unreliable measurements.
Thus, data processed for vectors with low wind speeds (corre-
sponding to small

� �
values) tends to be noisier than data from

higher wind speeds. Noise in low wind speed regions causes a
large error between the point-wise selected wind field and the
model-fit field.

Figure 6 shows a region with a low rms wind speed (2.9 m/s)
and the possible point-wise ambiguities. The point-wise algo-
rithm selected a large percentage of first ambiguities. Although
this region is noisy, there may be no ambiguity selection errors.
The point-wise algorithm simply had to select from the noisy
ambiguities given.

In order to estimate the noise level in nadir and low wind
speed regions, we present an average standard deviation of wvc
directions for each cross track/rms wind speed bin. The stan-

Nadir Region Wind Sweet Spot Wind

Figure 5: 8 W 8 Ambiguity selected wind field in the nadir re-
gion and “sweet spot”.
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Figure 6: A sample point-wise selected region of low wind
speed and all the ambiguities. Red are the first ambiguities,
blue are second, green are third, and cyan are fourth.

dard deviation for each region is estimated as the following:��¨ �  '©.�0O2 g � 9 ��K H Ihª � ª �LK H I � � H Ihª � ª 7#« H I i (12)

where
�

is the standard deviation for all vector directions ( � )
in a given 8 W 8 region. Here, we select the minimum value for
the direction standard deviation calculated when the directions
range from � p [ ¤ � to p [ ¤ � and from

¤ � to ¬n­ ¤ � . This definition
suppresses errors in the calculation of the standard deviation
when vector directions in a region straddle either

¤ � and ¬®­ ¤ �
or � p [ ¤ � and p [ ¤ � .

The standard deviation for each cross track position/rms wind
speed bin averaged over several hundred revs is plotted on a
three dimensional grid in Figure 7. A higher noise variance
at nadir and in low wind speed regions make it difficult to set
appropriate constant wvc thresholds for locating ambiguity se-
lection problems. Because the quality assurance algorithm is
based on flagging individual vectors exceeding a threshold in
direction or vector error, using constant thresholds promotes
more frequent flagging of high noise regions. This warrants
using variable thresholds for different cross track positions and
rms wind speeds.
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Figure 7: The average directional standard deviation for both
rms wind speed and cross track position.

6.2 Selecting Variable wvc Thresholds

This section develops the method of determining variable wvc
thresholds to detect ambiguity selection errors in the presence
of cross track and wind speed dependent noise. In addition to
the wvc and region thresholds, we describe several other crite-
ria which must be met to flag a region as a possible ambiguity
error. These results are tuned to SeaWinds data, but similar
methods may be adapted for use with future instruments.

A selection of 15 revs was manually inspected for ambiguity
selection errors in every 8 W 8 wvc processable region. All re-
gions that exhibited clear ambiguity selection errors were iden-
tified. This serves as a training set to tune the algorithm.

The following discussion uses the terms missed detections
and false alarms. A missed detection is defined as a region that
is manually flagged as an ambiguity selection error, but is not
flagged by the algorithm. A false alarm is defined as a region
that is flagged by algorithm as an ambiguity selection error, but
not manually flagged. The false alarm rate or probability of
false alarm is defined as the total number of false alarms di-
vided by the total number of regions not manually flagged as
ambiguity selection errors. The missed detection rate or prob-
ability of missed detection is defined as the total number of
missed detections divided by the total number of regions manu-
ally flagged as ambiguity selection errors. Because the number
of regions not manually flagged as ambiguity selection errors is
about 95% of the data, it is valuable to insure a low final false
alarm rate. Both direction and vector error thresholds are sep-
arately optimized to give a constant false alarm rate of 2.5%
for each type of threshold. At this false alarm rate, a region
threshold of 14% is found to be optimal.

6.2.1 Optimal Direction Error Thresholds

Because it is important to minimize the probability of false
alarm, the noise level at each cross track position and for each
rms wind speed must be taken into account. The variability
due to noise can be suppressed in the flagging process by set-
ting higher thresholds for statistically noisier regions thereby
equalizing the false alarm rate for all wind speeds and cross
track positions.

Assuming that the higher variability in Figure 7 is caused
mostly from noise, setting thresholds higher for regions of a
higher estimated directional standard deviation should suppress
false alarms due to noise. Thus, an optimally adjusted version
of the shape in Figure 7 should yield a constant false alarm rate
for all wind speeds and cross track positions.

To find a set of direction thresholds that gives a constant false
alarm rate for all rms wind speeds and cross track positions, the
following approach is implemented:

1. Using the training data set in which ambiguity selection
errors have been manually identified, all 8 W 8 wvc re-
gions are binned according to rms wind speed and cross
track position.



2. The initial wvc threshold is assigned to be the lowest ex-
pected threshold value.

3. The observed wind is compared to the model fit and re-
gions are flagged as possible ambiguity selection errors
according to the number of poor cells per region (in this
case, 14%).

4. The number of false alarms and missed detections is cal-
culated for each bin.

5. If the false alarm rate for a bin is above a certain limit,
the wvc threshold for that bin is raised.

6. If the missed detection rate for a bin is greater than zero,
and the false alarm rate is significantly smaller than the
desired false alarm rate, the wvc threshold is lowered.

7. The number of false alarms and missed detections is re-
computed for each cross track and rms wind speed bin.

8. This process is iterated until either the false alarm rate for
all the bins or the average false alarm rate falls beneath a
desired threshold.

This algorithm was applied to a set of 15 test revs. Figure 8
shows the resulting set of direction error thresholds. The gen-
eral shape mirrors the directional standard deviations shown in
Figure 7, verifying our assumption.

The thresholds in Figure 8 are very noisy because of the lim-
ited data set used to compute them. However, a good approxi-
mation to “smoothed” thresholds is formed by fitting the curve
from Figure 7 to match the values of Figure 8. The following
algorithm accomplishes this in a least-squares sense:

1. For each row of constant rms wind speed, the values from
Figure 7 and a uniform vector the same length are se-
lected to be “model parameters” for a cross track row
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Figure 8: The direction thresholds per cross track and rms wind
speed that minimizes the probability of false alarm beneath a
threshold of 2.5 ¯ .
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Figure 9: The direction error thresholds per cross track and rms
wind speed that minimize the probability of false alarm beneath
a threshold of 2.5 ¯ .
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Figure 10: The vector error thresholds per cross track and rms
wind speed that minimize the probability of false alarm beneath
a threshold of 2.5 ¯ .

from Figure 8. These two vectors form the columns of
matrix ° .

2. A least squares fit using these two model parameters is
made to the corresponding row of numerically determined
threshold values, ± H by taking the pseudo-inverse of the
matrix ° , i.e. }²' ° ~ ±�³ .

3. The modeled row is then ± ' ° } .

4. Each of the columns corresponding to constant cross track
position is low passed filtered to smooth out any obvious
anomalies.

5. Extra adjustments are made manually to improve perfor-
mance. These include adjusting the thresholds for low
( ¦*´ m/s) and high ( § p ¥ m/s) rms wind speeds to sub-
jectively give better performance. Insufficient data for
these regions warrant manual adjustment.

This method creates “smoothed” wvc thresholds which ap-
proximate the wvc thresholds that give a constant false alarm
rate for all cross track position and rms wind speeds on the
training data set. The final direction error thresholds are shown
in Figure 9.
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Figure 11: Probability of missed detection with optimized di-
rection and vector thresholds for different region thresholds.

6.2.2 Optimal Vector Error Thresholds

A set of vector error thresholds is also determined which equal-
izes the false alarm rate for both rms wind speed and cross track
position. These thresholds are determined in the same way as
the direction error thresholds. Figure 10 shows the imperially
determined and “smoothed” vector error thresholds.

In order to classify a region as an ambiguity selection er-
ror, the total number of wvcs flagged must exceed a threshold
of 14%. To select this threshold, we analyzed the the missed
detection rate generated by performing the wvc-threshold op-
timization algorithm with different region thresholds (Figure
11). As shown, the threshold that results in the minimum missed
detections is 14%. Thus, this threshold is used in the algorithm.

6.3 Additional Flagging Criteria

We have discussed an ambiguity selection error identification
scheme based on the number of individual vectors flagged per
region. The false alarm and missed detection rates have been
manually set by properly adjusting the wvc and region thresh-
olds. In order to further reduce the false alarms without sig-
nificantly increasing the missed detection rate, we determine
additional criteria that must be met in order to flag a region
as an ambiguity selection error. This section describes each of
the additional criteria including a region RMS error threshold,
a supplementary consistency check, and a region RMS wind
speed threshold.

6.3.1 Region RMS Error Threshold

In addition to the region threshold for the number of wvcs
flagged, an rms error threshold is applied to each region in-
spected. The rms error is defined as the following:� � ] � � ]�� � t � ] � � ]�� �V � �� (13)

where ] � and ]�� are the standard vector forms of the ob-
served and modeled winds respectively and V is the number
of valid data cells in the region. The number of false alarms
and missed detections per rms error bin from applying the al-
gorithm to the training data set is computed in Figure 12. The
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Figure 12: Histogram of the rms errors of all the regions man-
ually flagged as “poor”, the false alarms generated by the al-
gorithm, and the missed detections generated.

false alarms for regions whose rms error is less than 1.8 m/s
account for nearly 20% of the total number of false alarms.
The missed detection rate is also very high for those regions.
This suggests that the algorithm does not perform well for re-
gions where the rms error is low ( ¦ p l [ m/s). Thus, an rms
error threshold is applied which excludes all regions with rms
error less than 1.8 m/s from being flagged as possible ambi-
guity selection errors. The use of this threshold decreases the
false alarm rate by nearly 20% while it increases the missed
detection rate by less than 1%. For a region to be flagged as
a possible ambiguity selection error, the rms region threshold
must be met.

6.3.2 Supplementary Consistency Check

In order to further reduce the false alarm rate of the QA algo-
rithm, a supplementary consistency check is performed. The
purpose of a supplementary consistency check is to remove re-
gions with consistent flow but a high variation in wind speed
from being flagged. The low order KL model cannot model
rapid cell-to-cell variation in wind speed resulting in superflu-
ous flagging of fine-scale wind speed features. Since the wind
speed of a cell is not dramatically affected by the ambiguity
selection, rapid speed variation does not generally indicate am-
biguity selection errors. This section develops a “consistency
check” that determines whether or not there is sufficient di-
rectional variation in the region to classify it as an ambiguity
selection error.

Inconsistencies in the wind from ambiguity selection errors
cause the wvc directions of an observed wind field to drasti-
cally change from one part of the region to another. When a
histogram of all the wind directions in a region is made, re-
gions with ambiguity selection errors typically yield a multi-
modal histogram. That is, the selected wind vectors suggest
more than one major flow. Figure 13 shows a region of ambi-
guity selection error. Notice the histogram has more than one
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Figure 13: Wind field exhibiting ambiguity selection errors and
a histogram of the directions of all wvcs in the region.

significant peak. This is an indicator of inconsistent wind fields
within the region.

A histogram of a region’s directions is identified as multi-
modal in the following way:

1. The histogram is made with a bin spacing of 24 � . This
number was chosen because it maximizes the ambiguity
selection error detection rate.

2. The histogram is reordered with the minimum valued bin
first.

3. The histogram is differentiated with a numerical approx-
imation.

4. Multiple modes are detected through multiple changes
from positive to negative in the derivative (zero cross-
ings).

This simple consistency check complements the model based
detection scheme by providing an additional view of the con-
sistency of a region without some of the problems associated
with the restricted basis. However, because this consistency
check is not geophysically based, it is insufficient in fully de-
termining the quality of a region. Nevertheless, in the training
set, it is effective in ruling out over 91% of regions not contain-
ing errors.

6.3.3 RMS Wind Speed Threshold

An RMS wind speed threshold is additionally applied. Regions
with rms wind speeds less than 3.5 m/s are considered not pro-
cessable because the SNR may be too low to create valid wind
direction estimates. From experience with NSCAT, most re-
gions with rms wind speeds less than 4.0 m/s were flagged pri-
marily because of noise. Through examination of SeaWinds
data, we concluded that it is very difficult to subjectively locate
ambiguity selection errors when the region rms wind speed is
less than 3.5 m/s. Approximately 7% of the total number of
regions fall beneath this threshold.

6.4 Summary of ASE flag

As presented in this section, regions are individually flagged
according to the following criteria:

1. Over 14% of vectors in the region are flagged with either
the variable direction or vector error thresholds.

2. The rms error between the observed wind and the model
fit is greater than 1.8 m/s.

3. A histogram of the wvc directions in the region is multi-
modal.

4. The rms wind speed of the region is greater than 3.5 m/s.

In order to flag a region as an ambiguity selection error, all
of these criteria must be met.

7 PERFORMANCE OF THE ASE FLAG ON THE TRAIN-
ING DATA SET

The optimized ambiguity selection error flag is applied to the
training data set. This section relates the probability of false
alarm ( µ
¶8· ) and missed detection ( µ s1¸ ) for several test con-
ditions.

7.1 Overall False Alarm and Missed Detection Rate

Table 3 shows the results for the algorithm applied the the train-
ing data set using the following flagging schemes: (A) using
direction thresholds only, (B) using both direction and vector
thresholds, (C) including the supplementary consistency check
and the rms region threshold, (D) including the rms wind speed
threshold, (E) and not counting a region as a missed detection
if an overlapping region is flagged. The following observations
are made.

Table 3: False alarm and missed detection rates for the ambi-
guity selection error detection algorithm for various combina-
tions of flagging criteria.

Case Thresholds Other µ
¶=· µ sw¸A 1 - 0.025 0.18
B 1,2 - 0.053 0.062
C 1,2 3 0.017 0.132
D 1,2,4 3 0.015 0.135
E 1,2,4 3,5 0.015 0.030
Key
1: Numerically determined direction thresholds

from Fig. 9, Region threshold of 0.14
2: Numerically determined vector thresholds

from Fig. 10, Region threshold of 0.14
3: Including the supplementary consistency check

and the rms wind speed threshold
4: RMS error threshold of 1.8 m/s
5: Not counting a region as a missed detection if

another region with 50% overlap was flagged
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Figure 14: False Alarm and Missed Detection Rates for the al-
gorithm per cross track and rms wind speed. This data is taken
from a test set of 15 revs.

1. When both direction and vector error thresholds are used,
the false alarm rate increases, but there is a noticeable
reduction in missed detections (see case B opposed to
case A).

2. Using the additional criteria dramatically reduces the false
alarm rate (see case D opposed to case B).

3. Not counting a region as a missed detection if another
region with 50% overlap is flagged lowers the missed
detection rate (see case E).

From these results, we see that the detection rate for re-
gions containing ambiguity selection errors is approximately
97% while the false alarm rate is less than 2%.

7.2 False Alarm and Missed Detection Rates per Cross
Track and RMS Wind Speed Bin.

Figure 14 shows the false alarm and missed detection rates of
the ambiguity selection error flag for different cross track po-
sitions and rms wind speeds. For speeds from 5 to 15 m/s, the
quality assurance algorithm yields a rather constant false alarm
and missed detection rate. The algorithm is slightly less effi-
cient in the 4 m/s bin. In addition, there is a slight tendency
toward increased false alarms at nadir because the additional
criteria is not variable with swath location.

8 QA BIT FLAG

In order to make the QA data more accessible, we introduce a
QA bit flag that can be used in conjunction with the standard
wind product. Here, a level bit flag is introduced that indicates

the inferred quality of each cell in a rev. Wind data is generally
stored as a swath-shaped array with each element representing
a wvc. A corresponding QA flag array is produced by the qual-
ity assurance algorithm. The flag is a 4 bit integer at each wvc.
The following sections describe the meaning of each bit.

8.1 Individual WVC Flag

The two least significant bits of the QA flag,
� ¹ � � ¹ H � indicate in-

dividually flagged vectors. Bit
¹ H is set when a vector is flagged

using the constant thresholds in any of the overlapping regions
(noisy vector flag). Bit

¹ � is set when a vector is flagged using
the variable thresholds (possible ambiguity selection error or
ASE cell flag). Recall the variable thresholds are set higher in
nadir and low wind speed regions to produce a constant false
alarm rate over the swath, while the constant thresholds have
variable performance over the swath. The constant thresholds
serve as a noisy vector flag while the variable thresholds indi-
cate vectors more likely to be ambiguity selection errors. In
summary, the first two bits have the following meanings:¹ � � ¹ HW , 1 - Noisy vector: The cell is flagged using constant thresh-

olds in at least one of the overlapping regions, indicating
a generally noisy wind vector.

1, W - ASE cell flag: The cell is flagged using variable thresh-
olds in at least one of the overlapping regions. Multiple
neighboring flagged cells may indicate ambiguity selec-
tion errors in the vicinity.

8.2 Region WVC Flag

The two most significant bits,
� ¹ 7 � ¹ � � correspond to the region

flag. Because the 8 W 8 regions overlap, the wvc is classi-
fied with the highest classification for any of the overlapping
regions. The flagging scheme is:¹ 7 � ¹ �
0, 0 - Good: All overlapping regions containing the wvc are

flagged “good.” Each region contains less than 5% of
the individual wvcs flagged by the constant thresholds.
For these regions the wind flow fits the model estimate
very well and is spatially consistent having a low noise
level.

0, 1 - Fair: At least one overlapping region containing the wvc
is flagged “fair.” The region contains 5-20% of its wvcs
flagged by the constant thresholds. The wind flow is con-
sistent, but some vectors may contain moderate amounts
of noise and/or possible ambiguity selection errors. Wind
fields with fine scale spatial variations (e.g. fronts) may
also be flagged.

1, 0 - Poor: At least one overlapping region containing the wvc
is flagged “poor.” The region contains more than 20%
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Figure 15: QA bit flag example containing a possible region of
ambiguity selection error. Missing vectors indicate the posi-
tion of land. Notice that the QA algorithm flags the position of
inconsistencies in the estimated wind flow.

of wvcs flagged by the constant thresholds. The wind
flow is not consistent due to ambiguity selection errors
high levels of noise. Nadir regions and low wind speed
regions (both of which are noisier) are more likely to
flagged “poor.”

1, 1 - ASE region flag: At least one overlapping region is flagged
as containing ambiguity selection errors. The region ex-
ceeds 14% cells flagged by the variable wvc thresholds,
has an rms wind speed of above 3.5 m/s, the rms error be-
tween the observed and the modeled wind is more than
1.8 m/s, and the histogram of the wind directions in the
region is multi-modal. Given all of these considerations,
the region is estimated to contain substantial ambiguity
selection errors. Very high noise corruption and rain con-
tamination may also cause the region to be flagged.

The algorithm is performed for each rev and provides a flag
value for each wvc. Cells without wind estimates are flagged
with zeros. Note that isolated wvcs or isolated small wvc groups
cannot be effectively flagged and are, by default, flagged zero.
The QA flag can be viewed as an integer number from 0 to
15 indicating the increasing uncertainty in the correctness of
the wind flow at that cell. Figure 15 illustrates a region con-
taining an ambiguity selection error flagged by the algorithm.
Additional examples of the QA bit flag are shown in Figure 22.
Notice that the algorithm clearly identifies inconsistencies in
the estimated wind flow. This information can be used to lo-
cate isolated regions of ambiguity selection errors in order to
correct them.

9 QUIKSCAT QA RESULTS

In this section, the quality assurance algorithm is applied to 16
months of SeaWinds data and a statistical analysis is performed
of regions flagged by the algorithm.

Table 4: Overall results of the QA algorithm on a the entire
mission and the training data set. Also, the percent of ambigu-
ity selection errors manually flagged

Region Overall Training Training Set
Classification Set (QA (Manually

Algorithm) Flagged)
Good 65.2% 63.6% -
Fair 19.3% 19.6% -
Poor 15.5% 16.8% -
Contains
Ambiguity 4.6% 4.9% 4.0%
Selection
Errors

9.1 Overall SeaWinds QA Results

Here we examine the overall percent of regions classified ac-
cording to each of the general classification levels (good, fair,
poor) and the percent of regions identified as ambiguity selec-
tion errors. The overall QA results are given in Table 4 along
with the QA results from the training set.

The QA algorithm flagged approximately the same percent
of ambiguity selection errors as were manually flagged in the
training set (within 1%). The higher percent of estimated am-
biguity selection errors flagged by the algorithm are due to the
non-zero false alarm rate. From this data, we conclude that the
overall ambiguity selection is at least 95% effective for all over-
lapping 8 W 8 regions with wind speeds greater than 3.5 m/s.
Also, Z 65% of the regions are classified as “good” indicating
that most of the data has very low noise level.

The overall results of the algorithm on SeaWinds data are
comparable to the results of the QA algorithm developed for
NSCAT [1]. With NSCAT, 65% of regions are classified as
“perfect” or “good,” which is equivalent to the the “good” clas-
sification for SeaWinds. In addition, 18% of NSCAT regions
are classified as “poor.” Also, it is estimated that the NSCAT
ambiguity selection is over 95% effective. These results are
nearly identical to the results determined for SeaWinds. Thus,
our QA algorithm estimates that the quality of SeaWinds data
is approximately the same as the quality of NSCAT data.

9.2 Cross Track/RMS Wind Speed Dependence

When comparing the overall percent of regions flagged as “poor”
to those flagged as ambiguity selection errors (see Table 4), we
recognize that the percentage of regions flagged as ambiguity
selection errors is significantly smaller than the percentage of
regions classified as “poor.” To explain this, we examine the
cross track and rms wind speed dependence of the region clas-
sification. Figures 16 and 17 which show the percent of regions
classified as “poor” and flagged as ambiguity selection errors
per cross track and rms wind speed bins. As predicted in Sec-
tion 6, the majority of regions flagged as “poor” are low wind
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Figure 16: Fraction of all regions flagged as “poor” (blue line)
using constant thresholds and flagged as containing ambiguity
selection errors (red line) using optimized variable thresholds
per cross track position.

speed and nadir regions. Since the ambiguity selection error
flag is desensitized to noise at nadir and in low wind speed
regions, many less regions are flagged as ambiguity selection
errors than are classified as “poor.”

Examining the cross-track dependence of regions flagged as
ambiguity selection errors in Figure 16, we see that the al-
gorithm infers fewer ambiguity selection errors at nadir and
along swath edges than in the sweet spot. To explain this phe-
nomenon, we inspect the number of ambiguities produced per
cell for each cross track position. At nadir and on the swath
edges, more ambiguities are generally produced per cell. The
percent of 1 to 3 ambiguity cases per cross track is compared
to the percent of 4 ambiguity cases in Figure 18.

The general shape of the curve representing the 1 to 3 ambi-
guity cases of Figure 18 closely mirrors the percent of ambigu-
ity selection errors per cross track shown in Figure 16. At nadir
and on swath edges (where there are less ambiguity selection
errors), there is a higher likelihood of having four ambiguity
choices. Having more ambiguities may cause less estimated
ambiguity selection errors for two reasons: First, in regions
of data corruption (such as rain contamination), the nudging
algorithm generally has more ambiguity choices to match the
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Figure 17: Fraction of all regions flagged as “poor” (blue line)
and as containing ambiguity selection errors (red line) per rms
wind speed.
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Figure 18: Fraction of wvcs per cross track containing only 1 to
3 ambiguities (left figure) and fraction of wvcs per cross track
containing 4 ambiguities (right figure) averaged over 600 revs
of SeaWinds data.

nudging field. Second, the point-wise median filter has a wider
selection of possible ambiguities when creating a smooth solu-
tion. Thus, the sweet spot actually generates more inconsisten-
cies which are flagged as ambiguity selection errors.

9.3 Temporal QA Statistics

Next, we examine the ambiguity selection as a function of time.
Figure 19 shows the ambiguity selection errors averaged over 3
days for each point. The percent of ambiguity selection errors
stays nominally between 4% and 5% for the entire mission.
There is a slight seasonal rise in errors from March to May and
a drop in errors from May to August. This may be explained
by seasonal variations in weather patterns which affect the per-
formance of the QA algorithm [1].

In order to understand the seasonal weather pattern varia-
tions, we divide the QA data into latitude bands (see Table 5).
For each band, the average number of cyclonic storms passed
by SeaWinds per day and the average percentage of ambiguity
selection errors per day are computed and given in Figures 20
and 21. From visual inspection, the ambiguity selection errors
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Figure 19: Ambiguity selection errors as a function of time. The
blue line is the percent of ambiguity selection errors averaged
over 3 days. The red line is a 30 day moving average.



Table 5: Latitude bands

Band Range
1 �»º ¤ � to � ´ ¥ �
2 � ´ ¥ � to � � ¥ �
3 � � ¥ � to � ¥ �
4 � ¥ � to ¥ �
5 ¥ � to

� ¥ �
6

� ¥ � to ´ ¥ �
7 ´ ¥ � to º ¤ �

closely follow the number of cyclonic storms for each latitude
band. This indicates that a large part of the ambiguity selection
errors occur in stormy regions.

9.4 QA Bit Flag Results

The results presented thus far have given the statistics for the
QA algorithm on a region-by-region basis. However, because
the regions overlap, this does not fully reflect the actual per-
centage of wvcs flagged by the QA algorithm. Using the QA
bit flag, we generate statistics indicating the percent of cells
flagged individually by the algorithm and the percentage of
cells classified into each region classification. These are shown
in Table 6

From Table 6, we see that the due to the overlap of regions,
actual percentage of cells in regions of ambiguity selection er-
rors is higher than the percentage of regions flagged. However,

Table 6: Percent of valid individual wvcs flagged according to
several QA bit flag classifications. The symbol ’ W ’ indicates
a “don’t care.” The classifications have the following mean-
ings: A - No Flag: the cell is not excessively noisy and is not
estimated to be an ambiguity selection error, B - Flagged with
constant thresholds (noisy vector), C - Flagged with variable
thresholds (likely to lie near ambiguity selection errors), D -
“Good” region classification, E - “Fair” region classification,
F - “Poor” region classification, G - “Ambiguity selection er-
ror” region flag, H - Both region and cell flagged as an ambi-
guity selection error

Classification Bit Flag Percent¼ ½�¾�¿À½@ÁÂ¿À½�Ã�¿�½�Ä#Å
wvcs

A no flag
� ¤ � ¤ � ¤ � ¤ � 52%

B noisy cell
� W��ÀW:�ÀW:� p � 12%

C ASE cell
� W:�ÀW�� p �ÀW � 6%

D “good” region
� ¤ � ¤ �ÀW��ÀW � 53%

E “fair” region
� ¤ � p �ÀW:�ÀW � 22%

F “poor” region
� p � ¤ �ÀW:�ÀW � 16.5%

G ASE region
� p � p �ÀW:�ÀW � 8.5%

H ASE region &
� p � p � p �ÀW � 4.4%

ASE cell

the percentage of individual cells flagged in the regions of am-
biguity selection error are approximately equal to the percent
of regions flagged by the algorithm ( Z ¥ ¯ ).

10 SUMMARY AND CONCLUSIONS

The QA algorithm presented here classifies SeaWinds data ac-
cording to the general spatial consistency of the selected wind
and identifies regions of possible ambiguity selection errors.

This report shows that by using variable wvc thresholds to
flag poor wind vector cells, the effects of nadir and low wind
speed noise is suppressed in locating actual ambiguity selection
errors. Using these thresholds, the quality assurance algorithm
locates ambiguity selection errors in regions of moderate rms
wind speed (less than 3.5 m/s) with a false alarm rate of Z p lC¥ ¯
and a detection rate of less than 3%. Applying the algorithm
to the SeaWinds mission, less than 5% of overlapping 8 W 8
regions examined exhibit ambiguity selection errors.

The QA bit flag discussed in this report is a tool to locate pos-
sible problem regions in SeaWinds data. High bit flags gener-
ally indicate ambiguity selection errors, inconsistent wind flow,
high noise levels, or fine-scale wind features such as storms or
fronts.

According to the QA bit flag, the actual percent of valid wvcs
that occupy ambiguity selection error regions are about 8.5%.
However, less than 5% of cells are flagged with both the in-
dividual wvc and region ambiguity selection error flag. The
QA algorithm generally infers less errors at nadir and on swath
edges. This is due to a larger set of ambiguities in these regions.
However, the noise level at nadir is considerably more than at
other areas in the swath. There exist a slight temporal variation
of the QA algorithm’s performance, but the average percent of
ambiguity selection errors remains between 4% and 5% for the
entire mission. The percentage of ambiguity selection errors is
highly correlated to the number of storms passed per day by the
instrument. Overall, the ambiguity selection of SeaWinds data
is generally good.
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Figure 20: A few examples of the QA bit flag in stormy regions or regions of ambiguity selection error.
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Figure 21: Number of cyclonic storms passed per day by SeaWinds averaged over three days (blue) and moving averaged over 30
days (red) for each latitude band.
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Figure 22: Percentage of ambiguity selection errors averaged over three days (blue) and moving averaged over 30 days (red) for
each latitude band.


