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Image Reconstruction and Enhanced Resolution
Imaging from Irregular Samples

David S. Early Member, IEEEand David G. LongSenior Member, IEEE

Abstract—While high resolution, regularly gridded observa- many applications higher resolution is desired, leading to
tions are generally preferred in remote sensing, actual observations interest in image reconstruction and resolution enhancement
are often not evenly sampled and have lower-than-desired res- 5 4qrithms, Under suitable circumstances, such algorithms can

olution. Hence, there is an interest in resolution enhancement ide i d lution i by taki dvant f
and image reconstruction. This paper discusses a general theory provide improved resolution images Dby taking advantage o

and techniques for image reconstruction and creating enhanced Oversampling and the response characteristics of the aperture
resolution images from irregularly sampled data. Using irregular  function to reconstruct the underlying surface function sampled
sampling theory, we consider how the frequency content in py the sensor. When single-pass sampling is inadequate, it
aperture function-attenuated sidelobes can be recovered from may be possible to suitably modify the sampling by com-

oversampled data using reconstruction techniques, thus taking bini ltiole ob fi i th i
advantage of the high frequency content of measurements made °'"'N9 Mulliple observation passes 1o improve theé sampling

with nonideal aperture filters. We show that with minor modifica- ~ density, resulting in oversampled observations. In application,
tion, the algebraic reconstruction technique (ART) is functionally reconstruction/resolution enhancement algorithms can generate
equivalent to Grochenig’s irregular sampling reconstruction al-  jmages from the observations at a resolution better than the
gorithm. Using simple Monte Carlo simulations, we compare and mainlobe aperture resolution of the sensor

contrast the performance of additive ART, multiplicative ART, In this paper, a tutorial approach is used to present and dis-
and the scatterometer image reconstruction (SIR) (a derivative ’ " ) :
of multiplicative ART) algorithms with and without noise. The ~ cuss fundamental theories for image reconstruction and reso-
reconstruction theory and techniques have applications with a lution enhancement from noisy irregular samples based on al-
Vafiéatyt_Of SfenSOVS and can enable enhaﬂcedT hFGS;ﬂUEOD imagegebraic reconstruction techniques. While motivated by use in
roauction rom many nonimaging Sensors. e tecnnique IS H H H
ﬁlustrated with ERS-2 Zmd SeaV\%ngs scatterometer data. | mlcrowave remote sensing, the general theory apphes to a va-
riety of other sensors. In Section Il, the theory of image recon-
Index Terms—hregular samples, reconstruction, resolution en-  struction from irregular samples is considered. In Section I1l, we
hancement, sampling. show the equivalence of the algebraic reconstruction technique
(ART) [6], [7] and the irregular sampling/reconstruction theory
|. INTRODUCTION discussed in the first section. Using simulation, we demonstrate
that reconstruction can recover sidelobe information and con-

N TYPICAL “microwave remote sensing appllcatlonssider the practical use of the theory in the presence of noise in

obls %rvatlorls of the sur:]ac_:e p:]t?phe r:'ﬁs are made W,:thS%Ction IV. We compare the performance of additive and mul-
sampled aperture approach in whic € measurements gificative ART algorithms with the scatterometer image recon-
spatially filtered surface data sampled over a two-dimensio uction (SIR) algorithm, a row-normalized derivative of mul-

(2-D) grid. The gperture funct.|on IS defmed by the antenngicative ART tailored to reduce the influence of noise on en-
pattern and/or signal processing techniques used to res

£ with varying orientation can provide the best resolution

irregular grid and may have spatially varying aperture functig ancement capability, depending on the sampling density. In

responses. At times, the sensor may not even be consid ZCtion V, the utility of the technique is demonstrated using ac-

ant |mag|?gt T,ensor s[[rrl]ce thef apertl\lljre fltI;]erled samplzs al data. This introduction is concluded with a brief presenta-
not completely cover ne surface. INEvertheless, we desyif, ot ihe system model used in this paper and a comparison of
to generate the highest possible resolution images to aid

. : tf8ditional uniform sampling/reconstruction and irregular sam-
understanding geophysical phenomena.

i . . . ling/ truction.
Gridded images can be generated with the “drop—ln—thg-Ing reconstruction
bucket” techniques by assigning each measurement to a g&id System Model

element in which its center falls. However, the resolution : :
: o Let f(x, y) represent the true surface image at a paint/).
of such images is limited by the aperture response and for
e measurement system can be modeled by

z = H f + noise (1)
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set of measurementsare a discrete sampling ¢f convolved (a) i : Tow P N
with the aperture function (which may be different for each mea- —%> T - 7> OFvthe:;tss - f
surement) with a particular measuremenivritten as / 5 d3(x,v) !
- £ '
. N T T
= / / hi(z, 9)f(z, y)dody +noise  (2)
wherehi (z, y)isthe aperture response of the measurement. ~ (®) : Reconstractonl
For image reconstruction or resolution enhancement, we ar ;% 717727 Algoritm | T T
interested in the inverse problem /: d(xy) Pow,
L £ H
f — Hﬁlz (3) N

A . . Fig. 1. Block diagram illustrating sampling and signal recovery with a
Wheref is the estimate 01’70 derived from the measurementsconstant aperture function. The original surfgteés filtered by the system

z. The inverse of the operatdf, H-! is exact only ifH is  aperture functiors(z:, y) and sampled to obtain the measurementt (a),

invertible and the measurements are noise free, in which cag@sventional low-pass filter reconstruction inverts only the sampling step. In
f — 5 (b), full reconstruction inverts the operath, which includes both the aperture

) . . function and the sampling.
For a fixed aperture function, aperture-sampled data is equiv-

alent to ideal sampling of the image function convolved with | , . )
the aperture function (which is also termed a point-spread furlnction and the sampling [see Fig. 1(b)]. The reconstruction

tion), which typically has low pass characteristics. The effecgompensates for the aperture filtering by amplifying attenu-

of the aperture function are twofold. First, various frequenciedled frequencies, though the aperture function may limit the
gonstruction due to nulls in its spectrum.

particularly in the sidelobes, are attenuated. Second, the aﬂ@ e ; ; i
ture function may have nulls in its spectrum. While nulls can !f the sampling is regular (uniform) with a fixed aperture
lead to irretrievable loss of information, if the sampling densitl\Nction, the reconstruction can be accomplished with Wiener

i sufficiently high, data from even very low sidelobe levels cal{t€fing. an inverse filtering technique that also accounts for

be recovered with an appropriate algorithm. This is true ev@pise in the measurements [3]. However, inverse filter methods

when irregular sampling and variable aperture functions are f-° difficult to apply_ when the_sample spacing is i_rregular or
volved. when aperture functions vary with different observations. To ad-

Compared to traditional (uniform sampling) reconstructioﬁ,r.ess these problem_s, the next.section consigiers irregular sam-
this irregular sampling reconstruction can be considered a foRi'9 and reconstruction theory in greater detail. We address the
of resolution enhancement since high frequency informatig"iable aperture by the use of algebraic reconstruction, showing
suppressed (but not nulled out) by the aperture function is that it is applicable for reconstruction from irregular samples.
covered. We note that if there is noise in the system, a tradel¥e later demonstrate that suitable variation in the aperture func-
between the resolution enhancement and the noise level ex}Q8 can eliminate nulls in the reconstruction.

since high frequency noise tends to be amplified in the recon-
struction process. [I. IRREGULAR SAMPLING THEORY

While the theory of sampling and reconstruction is well
known when the sampling is uniform, irregular sampling

The traditional approach to sampling and reconstruction @and reconstruction theory is less familiar. Irregular sampling
founded on uniform sampling and the well known Nyquist sanproblems have been examined since the early 1960s (see [4]).
pling theorem [3]. Based on the Nyquist theorem, a bandlimitétbwever, in most studies, restrictive requirements are placed on
function can be completely reconstructed from regularly spactfe irregular sampling grid. Alternately, an arbitrary irregular
samples if the sample rate exceeds the Nyquist sample ratgid can be parameterized By which describes the maximal
twice the maximum frequency in the signal. In typical applicaspacing in the grid. This approach places no restrictions on the
tion, signal reconstruction is accomplished with only a low pasgructure of the sampling grid and is preferred in this study
filter. In effect, the aperture function is treated as an ideal lolecause it is a more general model of satellite sampling grids,
pass filter with no sidelobes and is ignored in the reconstruespecially when multiple orbit passes are combined.
tion [see Fig. 1(a)]. For this case, the recovered frequencies ardo consider the validity of reconstruction from such irregular
deemed limited to the width of the main lobe of the frequenssamples, recent work by Karl Gréchenig [5] is discussed. In
response of the aperture function. The aperture function aller to discuss the important lemmas and theorems, certain
acts as a prefilter to minimize high frequency components of thermal definitions and groundwork are first presented. These
signal that might otherwise cause aliasing in the reconstruciedlude definitions of the spaces and functionals used and some
signal. auxiliary information not presented in the cited text but which

Real-world aperture functions, however, are nonideal ahelp clarify the development.
have sidelobes. The sidelobes still contain enough informationLet L*(R) denote the Hilbert space of square-integrable
to recover at least some of the higher frequency content of theactions onk? with the norm||f|| = ([7°_ |f(z)|? dz)'/2.
original signal if the (possibly irregular) sampling is densket & C R? be a compact set wher@ denotes the cube
enough. This requires inverting both the effects of the aperth[af:l[—wi, wi]. Thew = (w1, we) defines the extension of

B. Sampling and Reconstruction
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Fig. 2. Graphical illustration of-dense in 2-D. (a) Witlh = (A, Ay), the union of the boxes around each sample point is too small to cover the image space.
(b) & = (A, Ay) is sufficiently large. For our purposeS,dense corresponds to the small@sfor which theR? image space is spanned.

Q. Finally, let B%(Q2) be a closed subset df?(R) such that || — A|’ < 1, required for the Neumann expansion to be valid.
B*(Q) = {f € L*(R): supp F' C Q} whereF is the Fourier Thus, a wide variety oft operators can be used. THeoperator
transform of f. B2(Q2) is, by definition, a Banach space. Anincorporates both the aperture function(s) and the sampling.
operatorA is bounded on the spacgif there exists a constant A specific operatord and the subsequent relationship be-
¢ such that|Au|| < ¢||u|| ¥« € B. The operator norm, denotedtween thes-dense sampling grid and the recoverable frequency
I-1I",isl|All" = supjjuy=1 [ Aul|. The formal concept af-dense content of the original signal for 2-D sampling and reconstruc-
parameterizes an irregular 2-D sampling grid according to [5tion is [5] the following.

Definition 1 (§-Dense: 2-D): A sampling sequence Theorem 1 (Gréchenig’s Theoremiven 2 C R2?

X = (#)icz In R? (z; = (&, &))is§ = (61,82)-dense with linear extensionw = (w;, wo) and the appropriate
if ;e Bs(zi) = R?* where Bs(x;) represents the squareBanach spaceB?({2), chooseé = (&, &) such that
H?:l[gi — (61/2), 51 + (61/2)] centered at;. 6w = Z?=1 biw; < 111(2). If X = (xi)iej is a 6-dense

In two dimensions, for our purposesdense is defined as thesampling setink”, then everyf € B?(Q2) can be reconstructed
minimum-sized rectangle centered at each sample point siigghn its sampled valueg(z;) by the iteration in (5) and (6).
that the union of the boxes completely fills the 2-D image spadée operatord is defined by
(see Fig. 2). Since the sampling set is typically limited to some
_ o ) .
finite space mR , We assume tha_lt the samp_llng set and image Af =P <Z f(xi)"(/)i> ®)
are periodic in space with a period determined by the dimen- -
sions of the finite sample space. By extension, the erfite
space is then covered by the union of the boxes for the periodibere (;);cz is the partition of unity with the properties

grid. suppy; C Bs(x;) [Bs(z;) as defined in Definition 1]; O
With the preliminaries established, the main lemma and th&-:(z) < 1; >, :(x) = 1, and P is the orthogonal projec-
orem may be considered [5]. tion from L2(R?) onto B?(2).

Lemma 1 (Grochenig’s Lemma: lterative Reconstruc- The idealizedA operator in this theorem can easily be visu-
tion): Let A be a bounded operator on a Banach spgacsuch alized for a regular grid, a special case of an irregular grid. Con-

that |7 — A] < 1 (I is the identity operator), wherg - || sider a regular Cartesian sampling grid with equal spadirig
denotes the operator norm éh ThenA is invertible onB and  thez andy directions. Such a grid is-dense withf = (A, A).
ATt =3 (1 - A A particular choice for the partition of unity functios; is a

1) Moreover, evenf € B can be reconstructed by the iter-Simple indicator function where at a point = (z, y), ¥ =1
on the squaréx + A/2, y £ A/2), and zero elsewhere. This

ation
4 4 corresponds to a square aperture function. The opefai®an
ideal low pass filter with a bandwidth correspondingo
Po =Af @ ideal filter with a bandwidth ding
Pyl = Pn — Ay (5) Theorem 1 establishes a relationship between the sample grid
> paramete® and the recoverable frequency contenj 6f the
= n original signal for this particular operat
f=> ¢ (©) I signal for th | o
n=0
2
with convergence iib. _ o
2) Settingf = 3", ¢, the error is 8w = ; Siw; < In(2). 9)
et LT — Al . : . .
If = fallp < |T — A" I ||/ Iflls. (@) Theln(2) termin (9) is determined in t_hg course of the proof_of
1=l — A Theorem [5]. If the spectrum of the original signal has a region

of supportQ = [—wy, wo]?, and thes-dense sample grid has

Proof of this lemma is provided in [5]. The iterative procedurg1 — 6, then the sampling density must satisfy

is based on the serie$™* = Y>> (I — A)", the Neumann

expansion for the inverse of an operator. The only limitations on In(2)

6 <

the operator are that it be bounded (as defined above) and that 20 (10)
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This requires the minimum sampling density to be higher than  (2)g Band
the Nyquist sampling density for a givem, or 1/1n(2) =~ % Limits
1.44 times the Nyquist rate for uniformly spaced samples. This = ves
“oversampling” is required to ensure reconstruction from the §

irregular grid. While the sample rate requirements are higher g

than the Nyquist rate for a uniform grid, this theorem establishes = Spatial Frequency

that a function can be completely reconstructed from irregular (b) 0

samples using this particulatr. The lemma suggests that a va- Aperture
riety of A operators can be used. Thus, for irregular sampling -10 Response

Grochenig’s lemma and theorem are equivalent to the Nyquist

. . 20
theorem for uniform sampling.

I1l. RECONSTRUCTIONALGORITHMS

Attenuation (dB)
[
=]

The previous section establishes the validity of signal recon-
struction from irregular samples. As long as the signal sam- -50
pling is adequately dense within the Banach space supporting
the signal, the original signal can be completely recovered. To
apply these formal results in practice, we relate the frequen%. 3. (a) Bandlimiting scheme that delimits the nulls in the aperture response
response of the aperture function to the Banach space and siow). The subbands, which can be truncated or continue indefinitely, define a
that Gréchenig’s algorithm is equivalent to block additive a|gé3anach space. (b) Frequency response of a particular aperture function.
braic reconstruction technique (AART) with a modified aperture
function. In this section, the relationship of AART to the mul- Because Lemma 1 requires the operator to be invertible on
tiplicative algebraic reconstruction technique (MART) is als8 Banach space, a Banach space of appropriately bandlimited

Spatial Frequency

explored. functions must be established. A simple case is the space of ideal
low pass filtered images where the spectrum of the image is lim-
A. Bandlimited Banach Space ited to|€?| < w. More generally, the spectral content can be lim-

As previously noted, the observations can be viewed as id . 3illustrates a set of truncated band limits imposed around

§ample; ofan apgrture filtered imagg where the aperture .ﬁltej nulls in the frequency response of a particular effective aper-

image is the true |mage.convolved with anaperture function. {re function. It can be shown that such a subband limited space
genera[, each obser\{atlon can use a different aperture fF‘”Cﬁ'é’a Banach space [10]. For adequately sampled data, the image
so multiple aperture filtered images may need to be con&derggh be completely reconstructed over this space according to

For a given aperture function, nulls in the frequency reSponéffijchenig’s Lemma, regardless of the aperture function, and
of the aperture function introduce corresponding nulls in th ' '

i : . . ulls N Me conclude that, in effect, the aperture function’s role is to de-
aperture filtered image. With a single aperture function, ima

L . gﬁf‘\git the Banach space.
frequencies in the aperture function spectral nulls are lost an

cannot be recovered via reconstruction. However, with multipie  Equivalence of AART and Gréchenig’s Algorithm
aperture functions, a net effective aperture function can be de-

fined from the appropriately averaged individual measurementART algorithms have bgen extenswely studied in the litera-
Iére and have been used in reconstruction problems (e.qg., [6],

g%i by the nulls in the effective aperture function. For example,
fi

aperture functions. Nulls in the effective aperture function cof- . ) .
P P 1, [14]). In this section, we compare AART and Grdchenig’s

respond to the intersection of the nulls of individual apertu rithm and show that with an ropriate implementation
functions. So long as the sampling density requirements are 0 and sho at an appropriate implementatio
AART, they are functionally equivalent in reconstructing

for the remaining frequencies, only frequencies correspondi . . .
g req y req P ages from sampled observations. AART is thus a practical

to the nulls in the net effective aperture function are lost. Al thod for i truction f . | |
other frequencies can be recovered by the reconstruction, sgi§hod for image reconstruction from irreguiar samples.

ject to the sampling considerations. Grdchenig's iterative algorithm given in Lemma 1 can be
While the original image may include informationin the nuII%ertten in the form [5]

of the effectiye aperture function, for the purposes of ar_1a]ysis, Fogt = fo + Af = ) (11)

we canredefinethe spectral region of support of the original

function to exclude the effective aperture function nulls. Withiwhere

the reduced image space, and subject to adequate samplingi operator meeting the requirements of Lemma 1;

the image can be perfectly reconstructed based on Gréchenig's image to be recovered;

Lemma. Image frequencies above those supported by the samf,  estimate off at thenth iteration.

pling density (i.e., greater thasm) cannot be reconstructed andGréchenig’s lemma is valid for a variety of operators with gen-

are aliased. The low pass filtering included in theperator fil- eral conditions and can thus be applied to either continuous or

ters out such frequencies and for the purposes of analysis, $henpledf images. In practical applicatiorf,can generally be

signal is redefined to exclude frequencies outside of the regiassumed to be piecewise continuous on a fine scale. This is

of support of the sampling. consistent with the requirement of a bandlimited (i.e., lowpass)
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original image. The image can then be treated as a finely saimAction used in the reconstruction must have support on
pled or discrete image at this finer scale. We note that this findre Banach space defined by both the observation aperture
sampling is quite different than the measurement sampling gridnction (which is the case by our definition of the Banach
Itis primarily for computational convenience wherein the imaggpace) and thé-dense sampling. To ensure the latter, a low
f is assumed to consist of discrete uniformly sized pixels mugiass filter with a cutoff frequency consistent with thelense
smaller than the measurement sampling. Each noise-free mesmpling is applied to the aperture functions in the rows of
surement or observation covers a number of these small pixeld?. If this is not done, artifact noise will be introduced in the
[compare (2)] reconstruction. Hereafter, the aperture function matri€esnd

H’ are assumed to include this low pass filtering. This is the

o zj\: beod? (12) aperture _functiqn_ mc_Jdificatior_l noted _ear_lier._A generaliZed
5T . i operator is implicitly included irfi{ by this filtering and the use
=t of the fine sampling grid.
where We must now show thatt = H meets the requirements of
a’  elements of the vectar of row-scanned image pixels Grochenig’s Lemma. This requires showing tiats bounded
from f; and invertible on the subband limited Banach space. The fre-
h;;  effective aperture response function for thle mea- quency nulls in the effective aperture response lead to complete
surement on thgth pixel; loss of information at some frequencies. However, if as dis-
N number of pixels inf. cussed earlierf is definedso that it has no frequency content at
Block AART can be written as [14] the nulls and no information is lost, though there may be attenu-
ation due to the frequency response of the aperture function. We
Z (si — pi)hij note that whileH includes both the observation sampling and
afl+1 =al + - je{l,2 ---, N} (13) @aperture function characteristips, i_n the following dis_cussion,we
Z hij assume that the sample spacing is adequate for signal recovery

i and deal strictly with aperture function effects on invertability.
How the sample spacing affects the signal recoverability is fur-
ther discussed in Section IlI-C.
The domain of, u € B2({') consists of all functions with
N a subband limited frequency respongemapsu into a range
pi = Z hijaﬁ; (14) spacev € R(H) C M. While H may null out certain frequen-
j=1 cies of an arbitrary input, the domaii?(2’) consists exclu-

. , . . .. sively of functions without these frequencies. Therefore, no in-
corresponding to théth measurement at theh iteration with formation is lost for the new problem definition. So for= Hu,

M total measurements. In effect, all measurements that toucv is the projection of. onto the columns off, and whilew

a ngfl o’ are summed and normalized to create the per p')ﬁ%lay have attenuated frequency components, all the original fre-
update. qla:ency components of are present in. The row normalized

¢ Int_(13), mﬁ normalized surtn tertrg Ond”:ﬁ rlght-iland_ S'?_e ISt nspose off, H’, is generated by multiplying each row by the
unction ot Ine measurement vectoand the back projection ¢, of the row elements and since elementary row operations
vectorp computed from theuth iterative estimate. The vectordO not affect the rank of the matrixank H = rank H'. Left

of measurements represents the sampled convolution of th i |

) : . ; ultiplication ofv by H', «/ = H'v = H'Huw, is also within
true image with the aperture function. This can be expresse ﬁ@original Banach space. Thdsjs a bounded operator on the
a matrix multiplications = Ha, whereH (with elements:;;) ’

. ; subband limited Banach space, meeting the first requirement of

is the sampled aperture function for each measurement. NOtl_negmma 1.

thatp = Hay, (13) can be written as Since the” low pass filter has no effect on frequencies within

(15) the Banach space, it does not affect invertability-oflf H is

full rank, thenH’H is full rank, and the operatd¥ is invert-

ible on the Banach space. However, it is not necessaryHhat

be full rank for the signal to be recoverable. Since by definition

no information is lost in the process of applyifgto an ap-
opriately subband limited input function, an appropriate gain
nction can be defined to compensate for any attenuation. This

gain function is the inverse of the attenuation imposed-by

g1 = an + H(a — ay) (17) andthus}is invertible on the subband limited Banach space,
meeting the final requirement of Lemma 1.

where’ ¥ = H'H. Thus, Grochenig's algorithm and AART We therefore conclude that the block AART reconstruction

have the same functional form. in (17) (with the modified aperture function per the earlier dis-
We now wish to show that block AART is equivalent tocussion) is equivalent to Gréchenig’s algorithm in (11). Thus,

Grochenig’s algorithm. The normalized aperture functions BMART represents a valid algorithm for the complete recovery of

the rows ofH correspond to the; terms in (8). The aperture the original image: for an appropriate choice d#?(Q?’) based

whereaq,, is thenth iterative estimate of, andp; is the back
projection

Gny1 =an +H'(s —p)
an41 =an + H'(Ha — Hay,) (16)

where thea’s are row-scanned image vectors, aHd is the
row-normalized transpose &f with elementsy;; / >, hs; that
perform the summation and normalization in (13). Thus, (1
can be expressed as
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on the aperture function nulls and the sampling density. ThisOn the other hand, MART effectively assumes a maximum
result is valid both for irregularly and regularly sampled obseentropy model for the data. In the frequency domain, the recon-
vations. struction is not strictly restricted to the bandlimited frequency
A complete reconstruction is only possible if the assumplomain spanned by the measurement space. Additional fre-
tion is made that the original function is contained in the spageency content in the null space may be added by the algorithm
B2%(§Y) spanned by the operator invefge . However, to avoid to create a sharper image [8]. However, the constraiat Hx
having to solve for and explicitly compute within this spaceaemains, and the reconstruction is based on a projection of
regularization techniques can be used to compute a unique m@asurements onto th# space, just as in AART.
lution on the full space. The AART algorithm automatically in- The choice of one method over another is a debatable issue.
cludes regularization and produces the least squares minimWfa can, in principle, select any regularization to use in the re-
norm solution. In principle, we can use any of a number of regenstruction if the regularization fits witha priori knowledge.
ularization schemes to generate an estimate of the signal foksdiscussed in [6], this decision may be based on the nature of
case where the original function is outside the space spannedliyy sampling mechanism (reflection, absorption or emission),

H~L. This is addressed further in the next section. and the nature of the solution the algorithm produces for under-
determined systems. The choice is dependent on which regular-
C. Signal Recoverability frorf-Dense Sample Spacing ization provides the best results for the given application. Least

Given a set of irregular samples that &rdense, the natural squares estimates (LSEs) produce a maximally smooth estimate

guestion is: what frequency content can be recovered using twgere edges tend to be softened and blurred. A maximum en-

grid and an algorithm such as (11) or (13)? While GrochentfPPY estimate produces a generally “sharper” image than least

assumed a particular operatdrin Theorem 1, other opera- Sduares, atleast forimages with high contrast [8].
tors can be used including the genetaldescribed. Because AART and MART enjoy a fundamental relationship based on

the sampling and aperture may vary, generating a predictiontla?3 common constraigt= Hz. Since both forms of ART have

frequency recoverability for a generdfl can be difficult. the same constraint equation, the resulting solutioae of the

However, an upper bound to the frequency recovery is basigneral form
on the equivalent Nyquist sampling rate. For an arbitrary r= U0 (20)
operator, the recoverable frequency range using an irregular

é-dense sampling grid is less than the frequency range {gnerel/ is an element of the row space Hf, or equivalently,

coverable by a regulaé-spaced grid as determined by thgne range space of the transposéfofH’, denoted/ € R(H'),
Nyquist criterion orwg < 1/26. A practical limit is the bound andQ is an element of the null space Hf, denoted) € A'(H).

determined in Theorem 1y < In(2)/26. Any solution derived from either additive or multiplicative ART
_ _ N S contains a componeht. However, the solution derived by using
D. Relationship of Additive ART to Multiplicative ART AART results inQ = 0, while the solution from MART gen-

With the equivalence of block AART and Gréchenig'€rally will have a nonzer@ component [9]. Since the con-
algorithm established, we consider the relationship of AARStrainty = Hux is the same for both algorithms, the solutions for
and a close relative, MART. The difference between AART arfPth AART and MART are the same in the range spacé/bf
MART is the regularization implicit in the algorithms. AART in the limit of infinite iterations. The only difference between
is equivalent to a least squares estimate in the limit of infinitdeé AART and MART solutions is th) component from the

iterations [6] based on the minimization problem null space ofH, i.e., the AART and MART solutions are the
same except in the nulls of the aperture function. If the aperture
Minimize ||lz2]] function does not have nulls, the solutions are identical in the
Subject to y = Haz. (18) noise-free case. We conclude that both AART and MART are

viable reconstruction techniques, with the understanding that in
MART with damping is a maximum entropy estimate in théhe null spaces, AART and MART may produce slightly dif-
limit of infinite iterations [6], [7] based on the maximizationferent results based on the different regularizations.
problem
IV. THE EFFECTS OFMEASUREMENT NOISE

Maximize —Z zjlnx; The previous section has shown that AART can completely
= (19) recover an arbitrary bandlimited function for the noiseless case
Subject to y=Hz. if the sampling is sufficiently dense. Given adequate sampling,

the reconstruction is essentially independent of the aperture

In effect, AART makes na priori assumptions about the datgunction. No matter how low the sidelobes of the aperture data

and fits the estimate strictly on the measurements available dng, the original signal (less the nulls) can be recovered in the

minimizing the error of the back projection of the measuremelimit, at least for noise-free measurements. We now consider
onto theH space in the mean-squared error (MSE) sense sivo additional issues for reconstruction with iterative algo-
jecttoy = Hz. Thus, the reconstruction is strictly containedithms. The first is a finite number of iterations, and the second
within the subband limited Banach space spanned by the mesanoise. The former is a practical limitation since no iterative

surements. process can proceed indefinitely. Therefore, while a particular
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Fig. 4. (Top) Signal and aperture used in the single-aperture simulation. TRMs and compare their performance in the presence of noise.
signal is a narrow sinc function. Dots show the sample values and the irregufiasy simplicity of illustration, a one-dimensional (1-D) signal
locations in the simulation. The arbitrary horizontal scale has been expan({& [ . ] -

relative to later figures for clarity. (Bottom) Schematic illustration (vertical scal ﬂh a bandlimited spegtrum '_S def_med with densely _sampled
is compressed for clarity) of the spectra of the signal and aperture functions. TR€asurements synthesized with a fixed aperture function whose
signal spectrum is a rect, while the aperture function spectraiisca. frequency response attenuates the high frequency components

of the signal spectrum (see Fig. 4). In this simple illustration, the
algorithm converges to a particular solution in the limit, th&lgnal is a narrow sinc function, while the aperture functionis a
limit may not be reached when the iteration is terminated. TH@de rector box-car function. The test signal is densely sampled
result is an approximation to the optimal reconstruction, biiith an irregular sampling grid. A rectangular aperture function
may not be a complete reconstruction [6]. Truncation of tHé_U‘?ed in this study so that the_ﬂrst S|de_lobe of the_ aperture is
iterations is ultimately another form of regularization [9]. within the spectrum of the test signal, as illustrated in Fig. 4, al-

While Gréchenig’s Lemma shows that complete reconstru'@-""i”.Q the reconstruct.ion of the attenugted frequencies within
tion of an irregularly sampled signal can be made, it does S|delob§ to be easily evaluatgd. While thg ape_rtu_re function
consider the effects of noise. Experimental results show tHt€d here is a constant (rect) window function, similar results
even highly attenuated frequency components are effectively &€ obtained with other window-based aperture functions. Also,
covered with finite iterations for noiseless observations. Ho20ugh this simulation illustrates recovery of only a single side-
ever, the addition of noise changes the problem because ndfl§: recovery of higher order sidelobes can be accomplished.
is amplified along with the desired signal during the reconstruE©" €ach algorithm, both noisy and noise-free cases are consid-
tion. In effect, the reconstruction process can be thought of a§™&d- For the noisy cases, Monte Carlo white noise is added.
high pass filter that removes the attenuation caused by the apef=0r this €xample, the spectrum of the ideal reconstruction is
ture function, except in the nulls in the aperture function. THE€ original frequency domain rect, punctuated by the aperture
high-pass nature of the reconstruction filter increases the nofdélS (see Fig. 5). In effect, this filter is applied to the noise
power. In Wiener filtering, the reconstruction filter response £2mponent of the measurements in the reconstruction. As illus-
modified so that when a specified noise-to-signal ratio threshdl@ted in Fig. 5, as the wave number increases, the reconstruction
is exceeded, the response is set to zero to minimize noise am@fin increases, resultmg in acorres'pondlng increase in th.e noise
fication [9]. A similar approach can also be adapted with tH&PWer- Thus, Increasing the band\_Nldth of the reconstruction re-
techniques discussed in this paper by suitably modifying ti§¥!tS in greater noise power at high frequencies, lowering the
filtered aperture function used in the reconstruction. Although\R: If the initial SNR is adequate, this is not a problem, but at
steps can be taken to minimize noise, it will, to one degree $?Me Point, the noise power may exceed an acceptable level.
another, limit the number of iterations that can be executed beWhile @ variety of other related reconstruction algorithms
fore noise overtakes the reconstruction. exist (e.g., [11]-[13]), we here consider only one additional
algorithm, the scatterometer image reconstruction (SIR) algo-
rithm. The algorithm is a derivative of MART developed for
multivariate scatterometer image reconstruction with noisy

Lacking a suitable theoretical analysis of the effects of noismeasurements [1]. A single-variate form has been used for
a Monte Carlo approach is employed to examine the behaviadiometer resolution enhancement [2] and is the form consid-
of the signal and noise power in the reconstruction. In the fadred in this paper. Although similar in performance to MART,
lowing discussion, a simple simulation is used to illustrate tH&IR is more robust in the presence of noise, particularly at low
image reconstruction and resolution enhancement of the al@NRs, and is thus a useful alternative to AART and MART.

A. Algorithm Performance Comparison
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Fig. 6. Comparison of AART, MART, and SIR outputs after 30, 100, and 1000
iterations for noiseless measurements. The ideal output is a sinc function.

Fig. 7. Frequency domain comparison of the outputs of AART, MART, and

SIR after 1000 iterations in the noiseless case. Vertical scale is linear. The ideal
spectrum is a rect. After additional iterations, MART and SIR results become

B. Noisy Versus Noise-Free Observations

To evaluate the algorithm performance, both noise-free and
noisy measurements are used. Further, since the algorithms can

essentially identical to the AART results.

- : X AART MART SIR
only be run a finite number of iterations, the performance as a 3 ye; 30 Tter 30 Tter
function of iterations is also considered.

Fig. 6 compares the output of the three algorithms at 30, 100, /ﬂﬂ f\ JFL
and 1000 iterations without noise. There are two significant ob-
servations from these results: First, the algorithms are able to A#ART MART SIR

K k L. ~ w/noise w/noise w/noise

provide good reconstruction of the original signal. Second, there 3g ger 30 Tter 30 Iter
is an apparent lag (as a function of the number of iterations) of Mﬂ\ }A\L m
the SIR and MART results compared to the AART output. This
lag is a result of the damped multiplicative update factor used AART MART SIR
in the MART and SIR algorithms. 1000 Iter 1000 Iter 1000 Trer

Fig. 7 illustrates the spectra of the output for 1000 iterations [ [_ﬂ pﬂ\ ]ﬂq
of all three algorithms (compare the sidelobe levels in this figure -
to those in Fig. 4). After processing, the full test signal band- aAart SIR

width (excluding the nulls) is essentially recovered. All three al-  w/noise

MART
w/noise w/noise
1000 Iter }»h mﬂ 1000 Iter «ﬁ ?L
i I
limits imposed by the aperture function nulls as predicted by the h ‘ J J\
theoretical development. _ , L
luate the performance with noise added. Fig. 8 pres Fig. 8.' Spectra of the output of AART, MAR_T, and SIR a_tdn‘ferent iterations
To evalua p » F19. 6 Préseflisoiseless and noisy measurements. Vertical scale is linear.
the spectra of the output from AART, MART, and SIR at 30
and 1000 iterations for both noiseless and noisy cases. We note
that the performance of AART in the presence of noise is sig-
nificantly degraded. This observation originally motivated the
development of SIR [1]. For both MART and SIR, the multi-
plicative update factors are damped so that large update factors
do not overly magnify the noise at any one iteration. SIR incor-

gorithms successfully reconstruct the original signal within the %% IterF 4

E(SIR)

porates a nonlinear damping, which can further reduce the noise £ |\ E(MART) E(AART)
at the expense of slower reconstruction. < \\
2 .
. Es(MART
C. Reconstruction Error \‘\ : Es(SIR) s : )
. . . . En(AA_
We now consider the relationship between the number of it- En(SIR) Es(AART)
erations and the quality of the reconstructed image. In general, En(MART)

iterative reconstruction suffers from two forms of error: recon-
struction error and noise amplification. The reconstruction error
is the difference between the iterative image estimate and the
noiseless true image. Noise amplification results from the in-

verse filtering of the noise, as previously noted [6], [g] _Fig. 9 Comparison of the RMS errors for AART, MART, _and SIR versus
iteration number. Each curve represents a separate application of the algorithm

A graph of the R_MS errors (RMSES) versus iteration numb?c{compute the RMS signal error (Es), the noise-only RMS error (En), and the
for the simulation is presented in Fig. 9. The graph shows thkignal plus noise RMS error (E).

0 100 200 300 400 500 600 700 800 900 1000
Iteration number
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noise amplification error (En), the reconstruction error (Es), and
the total error (E) for the signal plus noise for ARRT, MART, and
SIR. The errors are computed as the RMS of the pixel-by-pixel
difference between the true and the reconstructed images at eac
iteration. In the simulation, separate reconstructions are run for
case to evaluate the RMS error.

Considering Fig. 9, we note that at any given iteration, the
reconstruction error is smaller and the noise amplification is -
greater for ARRT than for MART and SIR. The total error for
AART reaches a minimum after just a few iterations but grows
rapidly as the iteration continues. SIR and MART reach minima
in the total error more slowly but eventually achieve lower levels
of total error.

The difference in noise amplification for the various algo-
rithms is further illustrated in Fig. 10. This graph shows a plot
of the noise amplification versus the reconstruction error. While

the overall performance of the algorithms are similar, at Iowgé'g'o

reconstruction errors MART and SIR have lower noise ampli-
fication than AART. At the lowest reconstruction errors, SIR
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has the smallest noise. In all cases, there is a tradeoff between Functions
reconstruction error and noise amplification controlled by the T :' 17T
number of iterations. We note that the differences become more g  Tre
E Image
apparent at lower SNRs. 2 .
It should be noted that while the RMSE is an indicator of the g :
accuracy of the reconstruction, the size and location of the error /\/./\

007 008

10. Plot of the noise amplification (RMS noise error, En) versus the
nstruction error (rms signal error, Es) from Fig. 9.

changes over the course of the iteration depending on the regu-
larization [9]. Also, the quality of the resulting imagery may
not always be a direct function of total error [8]. The image

Distance —>

Spectrum of True Image

quality for SIR at a given reconstruction error level is subjec- -
tively somewhat better than corresponding MART or AART Spectra Of/_\ d |
products when used with scatterometer data [1]. l‘;“per‘.‘""’\ N ',
T unctions \
1
D. Multiple Aperture Functions - N \
L
In the simulation example presented previously, irregular E .- e VX[~ -
~7 Y \Y4 (N

sampling with a fixed aperture function was employed. The
single aperture function introduces a null in the estimated
signal spectrum. However, when the aperture functions exhibi§. 11. (Top) Signal and apertures used in the dual-aperture simulation
variability between measurements, this null can be eliminatéd Fig. 4). The horizontal scale is expanded for clarity. (Bottom) Schematic

if the nulls of the various aperture functions do not imerseEthtration (compressed vertical scale) of the spectra of the signal and aperture
unctions.

and the sampling is adequately dense. To illustrate this, the

Wave Number —»

noise-free simulation previously described is modified so that AART
each measurement randomly uses either the original aperture 1000 Iter
function or a wider (lower resolution) aperture function, as
illustrated in Fig. 11. Simulation reveals that the spectra of the
estimated signal does not exhibit data loss due to an aperture

) : ; . MART
null. The signal is completely reconstructed in the noise-free 1000 Tter

case, as illustrated in Fig. 12. Noisy simulations yield con-
clusions regarding the relative performance of the algorithms
consistent with the previous section.

This result suggests a useful strategy in the design and ap- | SIR
plication of remote sensing instruments to optimize their reso- y 1000 Iter
lution enhancement capability during postprocessing. While a
minimum size aperture function yields the finest effective res-
olution, it is often possible to alter the “shape” of the effective
aperture. When adequately dense sampling is available, meig-12. Frequency domain output of AART, MART, and SIR after 1000
surements from elongated aperture functions with variable offrations in the noiseless dual aperture function case. After additional

iterations, the MART and SIR outputs match the AART output. The ideal

entations can prevent the occurrence of spectral nulls in the §§éctrum is a rect. Vertical scale is linear. Note the absence of nulls in the

constructed images. Including sampling and aperture functisignal spectra (cf. Fig. 7) when multiple aperture functions are used.

Power —

Wavenumber —
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Tk

R Fig. 14. Center locations of ERS-2 measurements used in Fig. 13. SeaWinds
measurements have a similar but much more dense irregular sampling pattern.
A plot of the SeaWinds measurement locations is completely black and thus is

! not shown.

R
L

& km x 668 km region of northern Mexico and southern Texas
o centered at 102°%F, 27 N.
. The ERS-2 scatterometer measurements have a Hamming

- ¢ window aperture function with a 3-dB width of 50 km [see
! e Fig. 13(c)] [20]. While the ERS-2 scatterometer data is reported
on a 25 km satellite track-based grid, combining multiple passes
Fig. 13. Images generated from actual ERS-2 and SeaWinds scatteromeig{q assuming the surface is constant) results in a much finer
data. (a) Gridded ERS-2 image, (b) SIR-processed ERS-2 image, and . . .
representative 3-dB instrument footprints to scale with images. The circk rfape sampling. A 30-day (JD 2.80'.310’ 1996) imaging pe-
corresponds to the ERS-2 50-km diameter footprint, while the other shapeskad is used for ERS-2 data, resulting ifalense sampling of
representative SeaWinds slice footprints which vary in size and orientati roxim I = 10 km Fig. 14). Th Winds “slice”
(d) Gridded SeaWinds image, (e) SIR-processed SeaWinds image, ancﬁ@p 0 ately h 0 .(Slee 9 )f e.Sea . hdS Sﬁce .
SIR with modified median filter-processed SeaWinds image. Images show th asurement; ave variable aperture un_Ct'OnS with an eifective
normalized radar cross section adjusted to @if@idence angleA in dB.” size of approximately 7 knx 30 km [see Fig. 13(c)] [19]. The

eight days (JD 230-237, 2000) of SeaWinds data used produce
. . . . 4-dense sampling better than 1 km. In both cases, the scat-
considerations in the design of the sensor system can resulf in . S
. . erometer measurements are normalized to an incidence angle
improved resolution.

We note that increased sampling density can be achiev?lefdmo' The noisy ERS-2 measurements have a normalized stan-

L . 0 i . )
by combining multiple passes over the study area [1], [11 ard deviation of approximately 5%. The SeaWinds slice mea

Assuming that the study area does not change between pasr%JeéS(raitrrslents are generally much noisier than the ERS-2 measure-

combining multiple overpasses can provide a dense Samplln%oth gridded and SIR reconstructed images created from the

of the image area. Of course, accurate position information S92 .
o2 : . i catterometer measurements are shown in Fig. 13. The gridded
for the individual samples is required. This approach can bé X N : " ;
[nages are produced using the “drop-in-the-bucket” technique

used to provide improved resolution images from sensors wi ih pixel sizes of 22 km and 11 km for ERS-2 and Seawinds,

single-pass sampling otherwise inadequate for applying the . . . !
gle-pass piing q " applying respectively. Each pixel value is defined as the average of all
reconstruction algorithm to enhance the effective resolutio. . . o
S ) the measurements that have a center location falling within the
Combining multiple passes has been successfully employe

with scatterometer data [1], [15]-[17] and is used in the ne {Id element. Since the effective resolution ofgrlddeq IMages Is
. : L oo imited by the resolution of the measurements, the grid size is set

section. The ultimate limits to such an application are the . X .
about half the measurement resolution. The gridded images

sampling density, nulls introduced by the aperture function(s fe expanded to match the size of the reconstructed images. For
the acceptable noise level, and the temporal stability of t '

study area [1]. e SIR reconstrgcteq measu_remepts, the rgconstruction i_s_done
ona2.225 km grid using 200 iterations. In Fig. 13(f), a modified
median filter [1] is incorporated in the SIR processing to reduce
the effects of the noise enhancement at the expense of some loss
of resolution.

The analysis presented thus far has been based on 1-D sim@&omparison of the gridded and reconstructed images in
lations. We now illustrate the 2—D application of the reconstruéig. 13 clearly reveals the improvement of the detail in the re-
tion theory with actual data, considering two sensors, one witbnstructed images. The reconstructed SeaWinds image shows
a fixed aperture and one with a variable aperture sensor. White noise enhancement effect of the reconstruction, though this
the technique can be used for many types of sensors, data fieameliorated when the modified median filter is used. Noise
two microwave scatterometer systems are used: the C-band &nkancement in the ERS-2 reconstructed image is less obvious
ropean Remote Sensing Satellite (ERS-2) [18] and the Ku-badhae to the lower noise level of the ERS-2 measurements.
SeaWinds on QuikScat [19]. Originally designed for wind mea- Although the two sensors operate at different frequencies,
surement over the ocean, these sensors measure the normatimaiflar features are visible in the image sets, albeit at different
radar cross section of the ocean’s surface from which the winffective resolutions. The dark feature in the center of the study
is inferred. Scatterometer data can also be used for land anddoea is a valley containing the lake Laguna de Mayran. To the
studies, e.g., [15]-[17]. In this analysis, the study area is a 868rth of the valley are the Sierra de Los Alamitos mountains,

V. ACTUAL DATA
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part of the Sierra Madre Oriental range that makes up the ne@ector. TheM noise-free observations of the true image:
vertical light band. Due to the corner reflector effect, urban arease

show up as light dots in the images. For example, the white area N

in the upper right corner is San Antonio, TX. This feature is 5 = Z hijal (1)
clearly visible in the SeaWinds images and in the reconstructed =

ERS-2 image but is difficult to distinguish in the gridded ERS-2

image. Similarly, Monterrey, Mexico is to the lower-right ofwheret;; is the aperture response function for ttemeasure-
image center. Though the resolution of the reconstructed imag@nt on thejth pixel. The matrixz with elementsy;; is formed
is very coarse when compared to synthetic aperture radar (SAI)applying the appropriate low pass filter (with bandwi€ith

images, scatterometer data is available over a multidecadal @efined by thes-dense sampling) to each row of the matfix
riod and has frequent global coverage. such that the rows af? are the low pass filtered rows &f. &/

is the row-normalized transpose Gf At the nth iteration, the

forward projectionp,, is
VI. SUMMARY AND CONCLUSIONS

This paper has discussed the theory of image reconstruction P = Gap. (22)

from irregularl_y sampled data. The relationship between theTne jterative AART, MART, and SIR algorithms require an
aperture function, the measurement sampling, and the recgfiial imagea, usually a constant. MART and SIR require that

struction has been examined. Grochenig's lemma was presenigdhe measurements and image pixels (at all iterations) have
to demonstrate that a signal can be completely recovered frgig same algebraic sign.

irregular samples. When the sampling is sufficiently dense, theTpe plock AART algorithm is
attenuation introduced by the aperture function can be com-
pensated for, resulting in a complete reconstruction exclusive Api1 = an + G (s —py) (23)
of the spectral nulls in the effective aperture function. Addi- )
tive ART with suitable modification was shown to be equiva/hile block MART is
lentto Grochenig’s algorithm. MART and AART solutions were N \ Aass
shown to be identical in the Banach space defined by the effec- o =al H <3—:> (24)
tive aperture function’s spectral nulls. Simulation was used to =1 \Pn
demonstrate the reconstructive abilities of AART, MART, an
SIR for noise-free and noisy cases.

The ART and SIR algorithms can be termed resolution en- ' M M
hancement algorithms because of their ability to fully recon- a1 = Z u?jgij/Zgij (25)
struct attenuated signal components. SIR is more robust than i=1 i=1
MART and AART in the presence of noise. Finally, when thg,here
aperture area is fixed but a sufficiently high sampling density is L
possible, elongated aperture functions with a diversity of over- 1 1 1 .
lapping orientations can yield the best possible resolution en- , » _ l2p;¢l < - @) aﬂd?] d>1 (26)

\c)‘/here)\ is the damping factor, typically 1/2. SIR is

hancement in postprocessing algorithms. i ) )
We conclude that for suitably designed or modified sampling, (3P0 (1 —d}) + afdy] dif <1

image reconstruction and resolution enhancement algorithms : . _

such as AART, MART, and SIR can be an effective way tyheredi’ = v/si/p;,. Forthe linearized form of SIRy; = d'

increase the effective resolution of remotely sensed imagefyused rather than (26).
Since the algorithms are typically applied in postprocessing,
they can be an inexpensive method for achieving higher reso- ACKNOWLEDGMENT
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